Share this page on LinkedIn
Share This Page on Google+
Share This Page on Twitter
tell someone about this page print this page
You are here: Contents > 2012 > Volume 21 Number 1 January 2012 > MITRAL VALVE DISEASE > Assessment of a Novel Stentless Mitral Valve Using a Pulsatile Mitral Valve Simulator

Assessment of a Novel Stentless Mitral Valve Using a Pulsatile Mitral Valve Simulator

Hitoshi Kasegawa, Kiyotaka Iwasaki, Shyunsuke Kusunose, Ryota Tatusta, Tetsuya Doi, Hiroki Yasuda, Mitsuo Umezu 

Center for Advanced Biomedical Sciences, Waseda University, Tokyo, Department of Cardiovascular Surgery, the Sakakibara Heart Institute, Tokyo, Japan

Background and aim of the study: The study aim was to develop a novel stentless mitral valve (SMV) and to evaluate its performance, using an original pulsatile simulator developed specifically to analyze the hydrodynamic function of the mitral valve.
Methods: The SMV developed at the authors’ institution consists of two major components: a large anterior leaflet with commissures, and a small posterior leaflet. The valve is formed by suturing the leaflets (made from bovine pericardium) to a flexible (Duran) ring. The SMV, constructed with a 27 mm flexible ring, was installed into the mitral valve simulator, after which the four papillary flaps of the two leaflets were sutured to artificial papillary muscles. The artificial ventricle was driven pneumatically at a pulse rate of 70 beats/min, with a systolic fraction of 35%. The mean flow, aortic pressure, and atrial pressure were adjusted to 4.5 l/min, 120/80 mmHg, and 10 mmHg, respectively. A 27 mm mechanical valve (MEV; St. Jude Medical Inc.)

was employed as a control. The hydrodynamic performance of the SMV and MEV were investigated and compared. An echo-Doppler study was also performed.
Results: The waveforms of the SMV and MEV showed a similar pattern. The mean transvalvular flow was 4.7 ± 0.4 l/min for the SMV, and 3.55 ± 0.13 l/min for the MEV (p <0.001). Mitral regurgitation was 5.07 ± 1.15 and 3.78 ± 0.35 ml/beat, respectively (p <0.05). Echocardiographic data indicated that the regurgitant jet towards the left atrial model was none or trivial for the SMV, and trivial for the MEV.
Conclusion: Within the environment of the mitral valve simulator, the novel SMV prepared from bovine pericardium demonstrated excellent performance characteristics, and may represent a potential future alternative for bioprosthetic stented mitral valves.

The Journal of Heart Valve Disease 2012;21:71-75

Assessment of a Novel Stentless Mitral Valve Using a Pulsatile Mitral Valve Simulator

Click the above hyperlink to view the article, right click (Ctrl click on a Mac) to open in a new browser window or tab.

Purchase this Article

Please click the button below to purchase this article. Single article purchases are provided at $50.00 per article. Upon clicking the button below, single article user account subscription details are requested and, upon successful payment, a single article user account is created. Single articles are availble in your account for seven days after purchase.